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Abstract In this work, we apply the anholonomic deformation method for constructing
new classes of anisotropic cosmological solutions in Einstein gravity and/or generalizations
with nonholonomic variables. There are analyzed four types of, in general, inhomogeneous
metrics, defined with respect to anholonomic frames and their main geometric properties.
Such spacetimes contain as particular cases certain conformal and/or frame transforms of the
well known Friedman-Robertson-Walker, Bianchi, Kasner and Gödel universes and define
a great variety of cosmological models with generic off-diagonal metrics, local anisotropy
and inhomogeneity. It is shown that certain nonholonomic gravitational configurations may
mimic de Sitter like inflation scenarios and different anisotropic modifications without sat-
isfying any classical false-vacuum equation of state. Finally, we speculate on perspectives
when such off-diagonal solutions can be related to dark energy and dark matter problems in
modern cosmology.

Keywords Anisotropic cosmology · Off-diagonal metrics · Exact solutions in gravity ·
Nonholonomic deformations

1 Introduction

Modifications of general relativity (GR) theory and new classes of cosmological solutions
have received much attention as attempts to account for dark energy and recent observations
from the Wilkinson Microwave Anisotropic Probe (WMAP), see [1–6] for reviews. There
is certain evidence of relatively small anisotropic departures from the standard Friedmann-
Robertson-Walker (FRW) model. However, we argue that it may be possible to involve more
general classes of anisotropic and/or inhomogeneous cosmological solutions, described by
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generic off-diagonal metrics1 in GR, in order to explain in the bulk the existing experimental
data and examine various types of cosmological scenaria.

A series of Bianchi models with anisotropies has been analyzed. There is a classification
of Bianchi metrics arranging all possible spatially homogeneous models depending on the
symmetry properties of their spatial hypersurfaces, see recent developments and references
in [7, 8]. A few of Bianchi universes contain the FRW model as a limiting case.2 But even
the best such models (the so-called Bianchi VIIh class) seem to be inconsistent [9] with
WMAP data.

Another classes of anisotropic and/or inhomogeneous solutions are used in Kasner and
Gödel cosmological models [10–16]. Nevertheless, the problem to construct the cosmolog-
ical model and related solutions of gravitational and matter field equations which would
describe most realistically the existing experimental data is still unsolved in modern gravity,
cosmology and astrophysics.

Recently, we developed the so-called anholonomic deformation method of constructing
exact solutions in gravity [17] (see examples and reviews in [18–22]). Perhaps, this is the
unique existing at present geometric method providing a formalism for generating very gen-
eral classes of solutions of gravitational field equations in GR and various high dimension/
metric-affine, Lagrange-Finsler, noncommutative or other extensions. The method is based
on nonlinear connection geometry originally elaborated for Finsler spaces, see details in
[23] and, in relation to standard theories of physics, in [20, 22]. In this work, we shall not
concern any questions related to details for scenaria of “Finsler cosmology” but consider
some geometric techniques for generating cosmological solutions parametrized by generic
off-diagonal metrics. The goal of this paper is to construct and analyze new classes of cos-
mological metrics for four dimensional, 4-d, pseudo-Riemannian spacetimes.

The off-diagonal anisotropic cosmological solutions to be considered in this work are
for GR. We shall use an auxiliary linear connection (the so-called canonical distinguished
connection, d-connection), for which the Einstein equations can be solved in general form
with respect to some adapted nonholonomic frames of reference.3 Such a connection is also
metric compatible and completely defined by the metric structure but contains nontrivial
torsion terms induced nonholonomically by some off-diagonal coefficients of metric. Having
constructed generalized exact (cosmological) solutions for an auxiliary connection, we have
to impose certain additional constraints on coefficients of metrics in order to “extract” exact
solutions for the Levi-Civita connection.

We emphasize that the anholonomic deformation method allows us to generate “almost
all” classes of solutions when the time like coordinate is contained as a “nonholonomic”
one. Such generic off-diagonal solutions possess at least a Killing vector symmetry and, in
general, depend additionally on two space coordinates. Various models of nonhomogeneous

1Such metrics can not be diagonalized by any coordinate transforms.
2The paradigm of modern cosmology is based on the Friedmann-Robertson-Walker (FRW) metric which is
derived as a spherical symmetric solution of the Einstein equations assuming homogeneity and isotropy on
large scales.
3In modern literature on mathematics and physics, there are considered three equivalent terms: nonholo-
nomic, anholonomic and/or non-integrable (for convenience, we shall use all such terms). Here, we also
note that our approach should not be confused with the so-called Cartan’s moving frame method when some
geometric/physical objects are re-defined with respect to some more convenient frames of references/local
basis. We consider nonholonomic deformations of geometric/physical objects (for instance, deformations of
the Levi-Civita connection) by imposing non-integrable constraints on the dynamics of gravitational fields
and anholonomic frames with associated nonlinear connections structure (the last one being defined as a
conventional horizontal (h) and vertical (v) spacetime splitting).
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and locally anisotropic cosmological models4 can be elaborated. The Einstein equations are
very complex systems of nonlinear partial differential equations. If we perform cosmological
approximations for an explicit metric ansatz (for instance, considering only the dependence
on time by averaging on space coordinates and imposing certain additional spacetime sym-
metries), we get some systems of nonlinear ordinary differential equations. Even we may
be able to solve such systems in a general form, we get only a very restricted subclass of
cosmological solutions. This way we “cut” the bulk of nonlinear gravitational interactions
and loose a number of important off-diagonal solutions.

In our approach, we can integrate the Einstein equations in some very general forms.
Performing approximations for general solutions (and not for certain coefficients of systems
of nonlinear equations), we find new classes of cosmological metrics which extend the al-
ready known families of metrics for Bianchi universes, Kasner spacetimes etc. We note, that
it is not possible to derive such cosmological metrics working directly with the Levi-Civita
connection and local coordinate frames. The surprising property of separation of equations5

exists for a more general type of connections which are also completely (and uniquely, but
with a different geometric meaning) determined by the metric structure. At the first step, we
can construct solutions for generalized connections and then, the second step, we have to
constrain some coefficients of metrics in order to generate (in our case, cosmological) solu-
tions in Einstein gravity. Solutions with “un-constrained” off-diagonal metrics also present
a substantial interest for modern cosmology because they can be related to more general
models of string/brane cosmology etc.

In our further works, we are going to provide an exhaustive study of generic off-diagonal
and locally anisotropic metrics, and related cosmological models, in Einstein and Lagrange-
Finsler theories of gravity that possess a FRW limit. The purpose of such constructions is to
characterize as full as possible the cosmological spacetimes with anisotropies and generic
off-diagonal nonlinear interactions and thus provide the strongest possible constraints on
exotic cosmologies. In the present paper, however, we focus on the very specific question of
whether general off-diagonal cosmological solutions can be constructed in Einstein gravity
and if such models necessarily involve de Sitter stadia and possible inflation induced by
nonlinear gravitational interactions.

This paper is organized as follows:
In Sect. 2, we present necessary geometric preliminaries on the nonlinear connection for-

malism and nonholonomic deformations of metrics, connections and frames in (pseudo) Rie-
mannian spacetimes. We outline certain classes of important cosmological solutions which
in this work will be deformed nonholonomically into generic off-diagonal solutions. The
Einstein equations are equivalently formulated for two types of important linear connections.
We use the fact that for the so-called canonical distinguished connection, the gravitational
field equations can be separated with respect to adapted nonholonomic frames.

In Sect. 3, we prove that the Einstein equations can be integrated in very general forms
containing all possible inhomogeneous and locally anisotropic cosmological solutions.
There are analyzed some important parametrizations and subclasses of such off-diagonal
solutions.

Section 4 is devoted to explicit constructions of generic off-diagonal cosmological so-
lutions. We derive families of anisotropic spacetimes containing in certain limits the FRW,

4We shall use also the equivalent terms ‘inhomogeneous/nonhomogeneous’ and say that the solutions are
(locally) anisotropic if the geometric constructions are defined for off-diagonal metrics with dependencies
both on time and space coordinates.
5It should be not confused with separation of variables.
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Bianchi, Kasner and Gödel type configurations. We show that imposing nonintegrable (non-
holonomic) constraints on the nonlinear dynamics of off-diagonal gravitational interactions
we can model various types of anisotropic and de Sitter solutions.

We summarize and discuss the results in Sect. 5.

2 Nonholonomic Deformations of Cosmological Solutions

In this section, we give general features of the geometry of nonholonomic deformations and
apply this formalism for constructing exact off-diagonal cosmological solutions. We follow
the notations of [19–22] were details and references can be found.

2.1 Geometric Preliminaries

Let us consider a (pseudo) Riemannian 4-d manifold V endowed with a metric g =
gαβ(uγ )duα ⊗ duβ of signature (+,+,−,+) when local coordinates are parametrized in
the form uα = (xi, ya), where xi = (x1, x2) and ya = (y3 = t, y4 = y).6 Indices i, j, k, . . . =
1,2 and a, b, c, . . . = 3,4 are used for a conventional (2+2)-splitting of dimension and gen-
eral abstract/coordinate indices when α,β, . . . run values 1,2,3,4.

We denote by ∇ = {�α
βγ } the Levi-Civita connection7 with coefficients stated with re-

spect to an arbitrary local frame basis eα = (ei, ea) and its dual basis eβ = (ej , eb). Contract-
ing the first and third coefficients of the Riemannian curvature tensor R = {Rα

βγ δ} of ∇ , we
define the Ricci tensor, Ric = {R βδ � Rα

βαδ}, which (in its turn) can be used for computing
the scalar curvature R � gβδR βδ, where gβδ is inverse to gαβ. The Einstein equations on V,

for an energy-momentum source of matter Tαβ, are written in the form

R βδ − 1

2
gβδR = κTβδ, (1)

where κ = const.
Our goal is to construct exact solutions of gravitational field equations (1) parametrized

in the form

ηg = ηi(x
k, t) ◦gi(x

k, t)dxi ⊗ dxi + ηa(x
k, t) ◦ha(x

k, t)ea ⊗ ea,

e3 = dt + η3
i (x

k, t) ◦wi(x
k, t)dxi, e4 = dy4 + η4

i (x
k, t) ◦ni(x

k, t)dxi,
(2)

for certain classes of coefficients (functions) to be defined below. In brief, we shall write
such metrics as

g = gij dxi ⊗ dxj + hab(dya + Na
k dxk) ⊗ (dyb + Nb

k dxk), (3)

where, for (2), gij = diag[gi = ηi
◦gi] and hab = diag[ha = ηa

◦ha] and N3
k = wi = η3

i
◦wi

and N4
k = ni = η4

i
◦ni. The gravitational ‘polarizations’ ηα and ηa

i determine nonholonomic

6In our works, we use conventions from [20, 22] when left up/low indices are used as labels for spaces and

geometric objects. We state that y3 = t because such a parametrization will allow us to construct and write
down the formulas for equations and solutions in a “most” simplified form.
7Which is uniquely defined by a given tensor g to be metric compatible, ∇g = 0, and with zero torsion;
we follow the conventions established in our previous works [20, 22], including summarizing on “up-low”
repeating indices if the contrary is not stated.
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deformations of metrics, ◦g = [ ◦gi,
◦ha,

◦Na
k ] →η g = [ gi, ha,N

a
k ]. Such transforms (with

deformations of the frame, metric, connections and other fundamental geometric structures)
are more general than those considered for the Cartan’s moving frame method, when the
geometric objects are re-defined equivalently with respect to necessary systems of reference.

Any set of coefficients Na
k in (3) state on V some N -adapted frame, eα, and dual frame,

eβ, structures (i.e. N -elongated partial derivatives, respectively, differentials)

eα �
(

ei = ∂i − Na
i ∂a, eb = ∂b = ∂

∂yb

)
, (4)

eβ �
(
ei = dxi, ea = dya + Na

i dxi
)
. (5)

Such local bases satisfy some nonholonomic relations
[
eα, eβ

] = eαeβ − eβeα = wγ

αβ (u) eγ , (6)

with nontrivial anholonomy coefficients wα
βγ (u) ,

wa
ji = −wa

ij = 	a
ij = ejN

a
i − eiN

a
j , wb

ia = −wb
ai = ∂aN

b
i . (7)

We can fix on V such systems of N -elongated frames when the sets of coefficients N =
{Na

k } define a Whitney splitting (in general, non-integrable) of tangent space T V to V,

T V = hV⊕vV (8)

into conventional horizontal (h) and vertical (v) subspaces, respectively, hV and vV. Such
a geometric object defines a nonlinear connection (N -connection) structure.

For any metric g (3) on a spacetime V, there is an infinite number of metric compat-
ible linear connections D, satisfying the conditions Dg = 0, and completely defined by
g. A subclass of such linear connections can be adapted to a chosen N -connection struc-
ture N, when the splitting (8) is preserved under parallelism, and called distinguished
connections (in brief, d-connections). A general d-connection is denoted by a boldface
symbol D = (hD,vD) distinguished into, respectively, h- and v-covariant derivatives, hD

and vD. To construct exact solutions in gravity theories is convenient to work with the
so-called canonical d-connection, D̂ = {�̂γ

αβ}, which with respect to N -adapted bases

(4) and (5) is given by coefficients �̂
γ

αβ = (L̂i
jk, L̂

a
bk, Ĉ

i
jc, Ĉ

a
bc), for hD̂ = {L̂i

jk, L̂
a
bk} and

vD̂ = {Ĉi
jc, Ĉ

a
bc}, where

L̂i
jk = 1

2
gir

(
ekgjr + ejgkr − ergjk

)
,

L̂a
bk = eb(N

a
k ) + 1

2
hac

(
ekhbc − hdc ebN

d
k − hdb ecN

d
k

)
, (9)

Ĉi
jc = 1

2
gikecgjk, Ĉa

bc = 1

2
had (echbd + echcd − edhbc) .

This canonical d-connection D̂ and its torsion T = {T̂γ

αβ ≡ �̂
γ

αβ − �̂
γ

βα; T̂ i
jk, T̂

i
ja, T̂

a
ji ,

T̂ a
bi , T̂

a
bc}, where the nontrivial coefficients

T̂ i
jk = L̂i

jk − L̂i
kj , T̂ i

ja = Ĉi
jb, T̂ a

ji = −	a
ji,

T̂ c
aj = L̂c

aj − ea(N
c
j ), T̂ a

bc = Ĉa
bc − Ĉa

cb,
(10)
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are completely defined by the coefficients of metric g (3) following the conditions that
D̂g =0 and the “pure” horizontal and vertical torsion coefficients are zero, i.e. T̂ i

jk = 0 and
T̂ a

bc = 0.

Any geometric construction for the canonical d-connection D̂ can be re-defined equiva-
lently into a similar one with the Levi-Civita connection following formula

�
γ

αβ = �̂
γ

αβ + Z
γ

αβ, (11)

where the distortion tensor Z
γ

αβ is constructed in a unique form from the coefficients of a
metric gαβ,

Za
jk = −Ĉi

jbgikh
ab − 1

2
	a

jk, Zi
bk = 1

2
	c

jkhcbg
ji − 
ih

jk Ĉ
j

hb,

Za
bk = +
ab

cd T̂ c
kb, Zi

kb = 1

2
	a

jkhcbg
ji + 
ih

jk Ĉ
j

hb, Zi
jk = 0, (12)

Za
jb = − −
ad

cb T̂ c
jd , Za

bc = 0, Zi
ab = −gij

2

[
T̂ c

jahcb + T̂ c
jbhca

]
,

for 
ih
jk = 1

2 (δi
j δ

h
k − gjkg

ih) and ±
ab
cd = 1

2 (δa
c δ

b
d + hcdh

ab).

2.2 Limits to Known Cosmological Solutions

In this work, we shall construct new classes of cosmological solutions8 with metrics ηg,

i.e. ‘target’ metrics, possessing certain limits, for ηα, ηa
i → 1, or ηa

i → 0, to ◦g (a ‘prime’
metric) which is a conformal, or frame/coordinate, transform of a well known FRW, Bianchi,
Kasner, or another type solution, see reviews of results in [7, 8, 24, 25].

2.2.1 FRW Metrics

The FRW cosmological solution can be written in the form

F g = a2(t)

(
dr ⊗ dr

1 − κr2
+ r2dθ ⊗ dθ

)
− dt ⊗ dt + a2(t)r2 sin2 θdϕ ⊗ dϕ, (13)

with κ = ±1,0, when the coordinates and coefficients of metric are parametrized, re-
spectively, in the form x1 = r, x2 = θ, y3 = t, y4 = ϕ (for spherical coordinates) and
F g1 = a2/(1 − κr2), F g2 = a2r2/(1 − κr2), F h3 = −1, F h4 = a2(t)r2 sin2 θ and F Na

i = 0.9

This metric is an exact solution of equations (1) with a perfect fluid stress-energy tensor,

T α
β = diag[−p,−p,ρ,−p], (14)

where ρ and p are the proper energy density and pressure in the fluid rest frame. The Ein-
stein equations for ansatz (13) take the form of two coupled nonlinear ordinary differential
equations (also called the Friedmann equations)

H 2 ≡
(

a∗

a

)2

= 1

3
ρ − κ

a2
(15)

8In general, such spacetimes inhomogeneous and anisotropic.
9Instead of FRW as a ‘prime’ metric ◦g, we can consider any Bianchi, Kasner etc. cosmological solutions
outlined in [4–6, 8, 9] and references therein.
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and

H ∗ + H 2 = a∗∗

a
= −1

6
(ρ + 3p), (16)

where the strong energy conditions for matter, ρ + 3p ≥ 0, must be satisfied for an expand-
ing universe.10 The Hubble parameter H ≡ a∗

a
has the unit of inverse time and is positive

(negative) for an expanding (collapsing) universe. The equations (15) and (16) may be com-
bined (which is also related to the condition ∇αT

α
β = 0)

ρ∗ + 3H(ρ + p) = 0.

For simplicity, we can consider κ = 0 with

F g = a2(t) (dx ⊗ dx + dz ⊗ dz) − dt ⊗ dt + a2(t)dy ⊗ dy, (17)

for Cartezian coordinates and coefficients of metric parametrized, respectively, in the form
x1 = x, x2 = z, y3 = t, y4 = y and ◦g1 = F g2 = a2, F h3 = −1 and F h4 = a2 (in this case,
the nontrivial coefficients of metric depend only on time like coordinate, t, but not on space
like ones).

2.2.2 Bianchi Type Metrics

All possible spatially homogeneous but anisotropic relativistic cosmological models are
arranged following the Bianchi classification corresponding to symmetry properties of their
spatial hypersurfaces [8, 26, 27]. Such cosmological metrics can be parametrized by ortho-
normal tetrad (vierbein) bases eα′′ = e

α

α′′∂/∂uα, when

Bgα′′β ′′ = Be
α

α′′ Be
β

β ′′ Bgαβ = diag[1,1,−1,1] (18)

and
[
Beα′′ , Beβ ′′

] = Bw
γ ′′
α′′β ′′ (t) Beγ ′′ ,

with time dependent ’structure constants’

Bw
γ ′′
α′′β ′′ (t) = ε α′′β ′′τ ′′nτ ′′γ ′′

(t) + δ
γ ′′
β ′′ bα′′ (t) − δ

γ ′′
α′′ bβ ′′ (t) (19)

(determined by some diagonal tensor, nτ ′′γ ′′
, and vector, bα′′ , fields) used for the mentioned

classification. Depending on parametrization of such tensor and vector objects, there are
constructed the so-called Bianchi universes which are closed, or not, to the homogeneous
and isotropic FRW case. With nontrivial limits to observable cosmology, there are the so-
called Bianchi I,V ,VII0,VIIh and IX cosmologies.

10For our purposes, and following our former works on geometric methods in gravity and exact solutions
[17, 19, 20], it is convenient to introduce a system of notations which is different form those used in standard
books on cosmology (see, for instance, [1–6, 24, 25], were readers may consult details and references on
modern cosmology).
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2.2.3 Kasner Type Metrics

For instance, in four dimensional gravity, such a metric is written in the form

Kg = t2p1dx ⊗ dx + t2p3dz ⊗ dz − dt ⊗ dt + t2p2dy ⊗ dy, (20)

with Kg1 = t2p1 , Kg2 = t2p3 , Kh3 = −1, Kh4 = t2p2 , KNa
i = 0, see details (including mod-

ern brane generalizations) and references in [10–12]. The constants p1,p2,p3 define solu-
tions of the Einstein equations if there are satisfied the conditions

2 3P = 2P − 1P, (21)

for (1P )2 = (p1)
2 + (p2)

2 + (p3)
2, 2P = p1 + p2 + p3,

3P = p1p2 + p2p3 + p1p3. Fol-
lowing the anholonomic deformation method, we shall generalize such solutions to generic
off-diagonal cosmological configurations, see Sect. 4.1.

2.2.4 Gödel Model

The theoretical model for the study of rotating cosmology is determined by the Gödel solu-
tion [13]

Gg = Ga2

[
dx ⊗ dx + e2x

2
dz ⊗ dz − (dt − exdz) ⊗ (dt − exdz) + dy ⊗ dy

]
, (22)

when Gg1 =G a2, Gg2 = e2x

2 G
a2, Gh3 = −Ga2, Gh4 =G a2, GNa

i =G wi = −ex, GNa
i = 0.

The matter is described as a dust with the energy density Gε and there is a nontrivial negative
(with opposite sign to that introduced by Einstein) cosmological constant Gλ determining
the angular velocity Gω of the cosmic rotation, Gω2 = 1/2Ga2 = 4πGGε = −Gλ, with G

as Newton’s gravitational constant. The parametrizations of coordinates and coefficients of
metrics are different from that considered in the former works, see a comprehensive re-
view of results and references in [14–16]. In Sect. 4.1, we shall provide an off-diagonal
generalization defining rotating universes with polarized cosmological constants and non-
holonomic/constrained rotations in nontrivial backgrounds.

2.3 The Einstein Equations for Connections D̂ and ∇

The Einstein equations (1) for a metric gβδ can be rewritten equivalently using the canonical
d-connection D̂,

R̂ βδ − 1

2
gβδ

sR = ϒβδ, (23)

L̂c
aj = ea(N

c
j ), Ĉi

jb = 0, 	a
ji = 0, (24)

where R̂ βδ is the Ricci tensor for �̂
γ

αβ, sR = gβδR̂ βδ and ϒβδ is such way constructed

that ϒβδ → κTβδ for D̂ → ∇ . We emphasize here that if the constraints (24) are satisfied
the tensors T̂γ

αβ (10) and Z
γ

αβ (12) are zero. This states that �̂
γ

αβ = �
γ

αβ, with respect to

N -adapted frames (4) and (5), see (11), even D̂ �= ∇ .
In a series of our works [17, 19–22], we provided detailed proofs that for constructing

exact solutions with generic off-diagonal metrics it is more convenient to work with the
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canonical d-connection D̂ than with the Levi-Civita connection ∇; the last one is considered
to be the standard one for general relativity. The surprising thing is that the “nonholonomic”
gravitational field equations (23) split in such a form, with respect to N -adapted frames (4)
and (5), that the resulting system of partial differential equations (see below, for instance,
(26)–(29)) can be solved in very general forms. In order to generate exact solutions for ∇ ,
we have to impose additional constraints (24) on coefficients of metric g (3) (for instance,
on ηg (2) if we wont to generate new classes of cosmological solutions).11

For an ansatz of type (2), the Einstein equations (23) for D̂ with a general source of type12

ϒα
β = diag[ϒγ ;ϒ1 = ϒ2 = ϒ2(x

k, t);ϒ3 = ϒ4 = ϒ4(x
k)] (25)

transform into a system of nonlinear partial differential equations with separation of equa-
tions for h- and v-components of metric and N -connection coefficients,

R̂1
1 = R̂2

2

= − 1

2g1g2

[
g••

2 − g•
1g

•
2

2g1
− (g•

2)
2

2g2
+ g′′

1 − gl
1g

l
2

2g2
− (gl

1)
2

2g1

]
= −ϒ4(x

k), (26)

R̂3
3 = R̂4

4 = − 1

2h3h4

[
h∗∗

4 − (h∗
4)

2

2h4
− h∗

3h
∗
4

2h3

]
= −ϒ2(x

k, t), (27)

R̂3k = wk

2h4

[
h∗∗

4 − (h∗
4)

2

2h4
− h∗

3h
∗
4

2h3

]

+ h∗
4

4h4

(
∂kh3

h3
+ ∂kh4

h4

)
− ∂kh

∗
4

2h4
= 0, (28)

R̂4k = h4

2h3
n∗∗

k +
(

h4

h3
h∗

3 − 3

2
h∗

4

)
n∗

k

2h3
= 0. (29)

In brief, we wrote the partial derivatives in the form a• = ∂a/∂x1, a′ = ∂a/∂x2, a∗ = ∂a/∂t.

The ansatz (2) does not depend on variable y4 (that why we do not have terms with ∂/∂y4).
The above system of equations can be solved in very general forms for arbitrary dimen-

sions and signatures as we proved in [17, 19–22] (see also next section). In this work, we
analyze “cosmological configurations” for D̂ when y3 = t for generic off-diagonal metrics
of type (2). New classes of cosmological conditions in general relativity, with the Levi-Civita
connection ∇ , will be extracted by imposing additional constraints

w∗
i = ei ln |h4|, ekwi = eiwk, n∗

i = 0, ∂ink = ∂kni (30)

satisfying the conditions (24).

11We note that it is not possible to solve the Einstein equations in general form working directly with ∇ be-
cause this way we do not get a separation of nonlinear partial differential equations. Our idea is to use a more
general connection (also defined completely by the same metric), when the system of nonlinear equations can
be integrated in some general forms, and than to constrain the solutions to generate metrics for the general
relativity theory.
12Such parametrizations of energy-momentum tensors are possible by corresponding nonholonomic frame
and/or coordinate frame transform for very general matter sources, including some important cases with
cosmological constants and various models of locally anisotropic fluid/scalar field/spinor/gauge fields inter-
actions on curved spaces.
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3 General Cosmological Off-Diagonal Solutions

In this section, we construct in explicit form and analyze the properties of possible classes
of solutions depending on time like variable t and on “horizontal” spacelike coordinates xi

of gravitational field equations (26)–(29), for the canonical d-connection, and of constraints
(30) selecting Levi-Civita configurations.

3.1 Type 1: Solutions with h∗
3,4 �= 0 and ϒ2,4 �= 0

Such metrics are defined by a metric ansatz

ηg = eψ(xk)dxi ⊗ dxi + h3(x
k, t)e3 ⊗ e3 + h4(x

k, t)e4 ⊗ e4,

e3 = dt + wi(x
k, t)dxi, e4 = dy4 + ni(x

k, t)dxi
(31)

with the coefficients being solutions of the system13

ψ̈ + ψ ′′ = 2ϒ4(x
k), (32)

h∗
4 = 2h3h4ϒ2(x

i, t)/φ∗, (33)

βwi + αi = 0, (34)

n∗∗
i + γ n∗

i = 0, (35)

where

φ = ln

∣∣∣∣ h∗
4√|h3h4|

∣∣∣∣, αi = h∗
4∂iφ, β = h∗

4 φ∗, γ = (
ln |h4|3/2/|h3|

)∗
. (36)

For h∗
4 �= 0;ϒ2 �= 0, we get φ∗ �= 0. Prescribing any nonconstant φ = φ(xi, t) as a gener-

ating function, we can construct exact solutions of (32)–(35) solving respectively the two
dimensional Laplace equation, for g1 = g2 = eψ(xk); integrating on t, in order to determine
h3, h4 and ni, and solving algebraic equations, for wi. We obtain (computing consequently
for a chosen φ(xk, t))

g1 = g2 = eψ(xk), h3 = ± |φ∗(xi, t)|
ϒ2

,

h4 = 0h4(x
k) ± 2

∫
(exp[2 φ(xk, t)])∗

ϒ2
dt, (37)

wi = −∂iφ/φ∗, ni = 1nk

(
xi

) + 2nk

(
xi

)∫
[h3/(

√|h4|)3]dt,

where 0h4(x
k), 1nk(x

i) and 2nk(x
i) are integration functions. We have to fix a correspond-

ing sign ± in order to generate a necessary local signature of type (+ + −+) for some
chosen φ,ϒ2 and ϒ4.

Here we note that the general off-diagonal solutions (13) include as particular cases the
solutions for a nontrivial cosmological constant ϒi = λ, or nonholonomic configurations
with polarizations of such constants, λ → hλ(xk) = ϒ4(x

k) and λ → vλ(xk, t) = ϒ2(x
k, t).

13It is an equivalent of (26)–(29) for h∗
3,4 �= 0.
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In order to construct exact solutions for the Levi-Civita connection, we have to constrain
the coefficients (37) of metric (31) to satisfy the conditions (30). Such constraints restrict the
class of generating and integration functions. For instance, we can chose that 2nk(x

i) = 0
and 1nk(x

i) are any functions satisfying the conditions ∂i
1nk = ∂k

1ni. The constraints for
φ(xk, t) follow from constraints on N -connection coefficients wi = −∂iφ/φ∗,

(wi[φ])∗ + wi[φ] (h4[φ])∗ + ∂ih4[φ] = 0,

∂i wk[φ] = ∂k wi[φ], (38)

where, for instance, we denoted by h4[φ] the functional dependence on φ. Such conditions
are always satisfied for cosmological solutions with φ = φ(t) or if φ = const (in the last
case wi(x

k, t) can be any functions as follows from (34) with zero β and αi, see (36)).

3.2 Important Special Cases

We can construct such solutions for certain special parametrizations of coefficients for ansatz
(37) subjected to the condition to be a solution of (32)–(35).

3.2.1 Type 2: Solutions with h∗
4 = 0

The equation (27) can be solved for such a case, h∗
4 = 0, only if ϒ2 = 0. We can consider

any functions wi(x
k, t) as solutions of (28), and its equivalent (34), because the coefficients

β and αi, see (36), are zero. To find nontrivial values of ni we can integrate (35) for h∗
4 = 0

and any given h3 which results in ni = 1nk(x
i) + 2nk(x

i)
∫

h3dt. We can consider any

g1 = g2 = eψ(xk), with ψ(xk) determined by (32) for a given ϒ4(x
k).

Summarizing the results, we conclude that this class of solutions is defined by an ansatz

ηg = eψ(xk)dxi ⊗ dxi + h3(x
k, t)e3 ⊗ e3 + 0h4(x

k)e4 ⊗ e4,

e3 = dt + wi(x
k, t)dxi, e4 = dy4 +

[
1nk

(
xi

) + 2nk

(
xi

)∫
h3dt

]
dxi,

(39)

for arbitrary generating functions h3(x
k, t),wi(x

k, t), 0h4(x
k) and integration functions

1nk(x
i) and 2nk(x

i).

The conditions (30) selecting from (39) a subclass of solutions for the Levi-Civita con-
nection transform into the equations

2nk

(
xi

) = 0 and ∂i
1nk = ∂k

1ni,

w∗
i + ∂i

0h4 = 0 and ∂iwk = ∂k wi,

for any such wi(x
k, t) and 0h4(x

k). This class of constraints do not involve the generating
function h3(x

k, t).

3.2.2 Type 3: Solutions with h∗
3 = 0 and h∗

4 �= 0

Such metrics are defined by ansatz of type

ηg = eψ(xk)dxi ⊗ dxi − 0h3(x
k)e3 ⊗ e3 + h4(x

k, t)e4 ⊗ e4,

e3 = dt + wi(x
k, t)dxi, e4 = dy4 + ni(x

k, t)dxi,
(40)
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where g1 = g2 = eψ(xk), with ψ(xk) being a solution of (32) for any given ϒ4(x
k). The

function h4(x
k, t) must satisfy (33) which for h∗

3 = 0 is just

h∗∗
4 − (h∗

4)
2

2h4
− 2 0h3h4ϒ2(x

k, t) = 0.

The N -connection coefficients are

wi = −∂i φ̃/φ̃∗, ni = 1nk

(
xi

) + 2nk

(
xi

)∫
[1/(

√|h4|)3]dt,

when φ̃ = ln |h∗
4/

√| 0h3h4||.
The Levi-Civita configurations for solutions (40) are selected by the conditions (30)

which, for this case, are satisfied if

2nk

(
xi

) = 0 and ∂i
1nk = ∂k

1ni,

and

(
wi[φ̃])∗ + wi[φ̃] (h4[φ̃])∗ + ∂ih4[φ̃] = 0,

∂i wk[φ̃] = ∂k wi[φ̃].

Such conditions are similar to (38) but for a different relation of v-coefficients of metric to
another type of generating function φ̃. They are always satisfied for cosmological solutions
with φ̃ = φ̃(t) or if φ̃ = const (in the last case wi(x

k, t) can be any functions as follows from
(34) with zero β and αi, see (36)).

3.2.3 Type 4: Solutions with φ = const

If we fix φ = φ0 = const in (36), but h∗
3 �= 0 and h∗

4 �= 0, we can express the general solutions
of (32)–(35) in the form

ηg = eψ(xk)dxi ⊗ dxi − 0h2
[
f ∗ (

xi, t
)]2 |ςϒ

(
xi, t

) |e3 ⊗ e3

+ f 2
(
xi, t

)
e4 ⊗ e4, (41)

e3 = dt + wi(x
k, t)dxi, e4 = dy4 + nk

(
xi, t

)
dxi,

where 0h = const, g1 = g2 = eψ(xk), with ψ(xk) being a solution of (32) for any given

ϒ4(x
k), and ςϒ(xi, t) = ς4[0](xi) − h2

0
16

∫
ϒ2(x

k, t)[f 2(xi, t)]2dt. The N -connection coeffi-
cients N3

i = wi(x
k, t) and N4

i = ni(x
k, t) are

wi = −∂iςϒ(xk, t)

ς∗
ϒ(xk, t)

(42)

and

nk = 1nk(x
i) + 2nk(x

i)

∫ [f ∗(xi, t)]2

[f (xi, t)]2
ςϒ

(
xi, t

)
dt. (43)
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We must take ς4[0](xi) = ±1 if ςϒ(xi, t) = ±1 for ϒ2 → 0. In such a case, the func-
tions h3 = − 0h2 [f ∗(xi, t)]2 and h4 = f 2(xi, t) satisfy (33) written in the form

√|h3| =
0h(

√|h4|)∗, which is compatible with the condition φ = φ0.

The subclass of solutions for the Levi-Civita connection with ansatz of type (41) is sub-
jected additionally to the conditions (30). For instance, we can chose that 2nk(x

i) = 0 and
1nk(x

i) are any functions satisfying the conditions ∂i
1nk = ∂k

1ni. The constraints on values
wi = −∂iςϒ/ς∗

ϒ result in constraints on ςϒ, which is determined by ϒ2 and f,

(wi[ςϒ ])∗ + wi[ςϒ ] (h4[ςϒ ])∗ + ∂ih4[ςϒ ] = 0,

∂i wk[ςϒ ] = ∂k wi[ςϒ ], (44)

where, for instance, we denoted by h4[ςϒ ] the functional dependence on ςϒ. Such condi-
tions are always satisfied for cosmological solutions with f = f (t). For D̂, if ϒ2 = 0 and
φ = const, the coefficients wi(x

k, t) can be arbitrary functions (we can fix ςϒ = 1, which
does not impose a functional dependence of wi on ςϒ) as follows from (34) with zero β and
αi, see (36). To generate solutions for ∇ such wi must be additionally constrained following
formulas (44) re-written for wi[ςϒ ] → wi(x

k, t) and h4[ςϒ ] → h4(x
i, t).

We note that any solution g = {gα′β ′(uα′
)} of the Einstein equations (23) and/or (1) with

Killing symmetry ∂/∂y (for local coordinates in the form y3 = t and y4 = y) can be para-
metrized in a form derived in this section. Using frame transforms of type eα = eα′

αeα′ , with

gαβ = eα′
αe

β ′
βgα′β ′ , for any gαβ (2), we relate the class of such (inhomogeneous) cosmological

solutions, for instance, to the family of metrics of type (31).14

Following recent developments from [17], we can construct ‘non-Killing’ solutions de-
pending on all coordinates. Such general classes of solutions can be parametrized in the
form

g = +gi(x
k)dxi ⊗ dxi + ω2(xj , t, y)ha(x

k, t)ea ⊗ ea,

e3 = dy3 + wi(x
k, t)dxi, e4 = dy4 + ni(x

k, t)dxi, (45)

for any ω for which ekω = ∂kω+wkω
∗+nk∂ω/∂y = 0, when (45) with ω2 = 1 is of type (2).

Finally, we note that the metrics constructed above define general cosmological solutions
of Einstein equations for any type of sources κTβδ which can be parametrized15 in a formally
diagonalized form ϒγ (25), with respect to a nonholonomic frame of reference.

4 Examples of Cosmological Models with Off-Diagonal Metrics

The goal of this section is to analyze explicit examples of generic off-diagonal cosmological
solutions with ϒ4 = 0 but, in general, with non-vanishing ϒ2(t). Such solutions are con-
structed as examples of metrics (37), (39), (40) and (41). The new classes of cosmological
metrics have respective ‘diagonal’ limits to conformal and/or frame transforms of metrics
(17), (18), (20), (22).

14We have to solve certain systems of quadratic algebraic equations and define some eα′
α (uβ), choosing a

convenient system of coordinates uα′ = uα′
(uβ).

15Using chains of nonholonomic frame transforms, this is possible for ‘almost’ all physically important
energy-momentum tensors.
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We consider a particular parametrization of metrics of type (2) when

ηg = ηi(x
k, t) ◦gi(x

k, t)dxi ⊗ dxi + ηa(t)
◦ha(t)ea ⊗ ea,

e3 = dt + η3
i (t)

◦wi(t)dxi, e4 = dy4 + η4
i (t)

◦ni(t)dxi,
(46)

or (for an alternative parametrization)

e3 = dt + [
η3

i (t) + ◦wi(t)
]
dxi, e4 = dy4 + [

η4
i (t) + ◦ni(t)

]
dxi,

when (for some constructions) g1 = η1(x
k, t) ◦g1(x

k, t) = 1 and g2 = η1(x
k, t) ◦g2(x

k, t) =
1 are trivial solutions of (26), and (32), with ϒ4 = 0. For homogeneous configurations, we
can always introduce such coordinates when the coefficients of metrics do not depend on
space variables (a formal presence of radial and angular variables may exist, for instance, in
spherical coordinates, like in the case of FRW metric (13)) The polarization functions ηa(t)

and ηa
i (t) can be chosen in a form which allows us to generate homogeneous configurations

(i.e. solutions not depending on space coordinates) with ha(t) = ηa(t)
◦ha(t) and wi(t) =

η3
i (t)

◦wi(t), ni(t) = η4
i (t)

◦ni(t).

4.1 Nonholonomic FRW, Bianchi, Kasner and Gödel Type Configurations

4.1.1 N-anholonomic FRW Generalizations

Solutions of Type 1 We chose ◦gi = 1, ◦h3(t) = −a−2(t), ◦h4 = 1, where a(t) is de-
termined by (15) and (16) for the FRW model. A class of anisotropic and inhomogeneous
solutions parametrized by metrics of type (37) is generated by data

g1 = g2 = 1, h3 = ± |φ∗(xi, t)|
ϒ2(xi, t)

,

h4 = 0h4(x
k) ± 2

∫
(exp[2φ(xk, t)])∗

ϒ2(xi, t)
dt,

wi = −∂iφ/φ∗, ni = 1nk

(
xi

) + 2nk

(
xi

)∫
[h3/(

√|h4|)3]dt.

Off-diagonal cosmological metrics depending only on variable t can be extracted by gravi-
tational polarizations

ηi = 1, η3 = a2(t)|φ∗(t)|/ϒ2(t), η4 = 1 ± 2
∫

(exp[2φ(t)])∗

ϒ2(t)
dt,

η3
i (t) = 0, η4

i (t) = 1nk + 2nk

∫
[η3(t)/(

√|η4(t)|)3]dt,

(47)

with some 1nk = const, 2nk = const, when wi(t) = η3
i (t)+ ◦wi(t) = 0, for ◦wi(t) = 0, and

ni(t) = η4
i (t) + ◦ni(t), for ◦ni(t) = 0. The factor a2(t) can be included into a generating

function φ(t), or into a source ϒ2(t) (we can say that it is nonholonomically modelled by
such a generating function, alternatively, effective source). The off-diagonal metric

ηg = dx1 ⊗ dx1 + dx2 ⊗ dx2 + |φ∗(t)|
ϒ2(t)

dt ⊗dt

+
[

1 ± 2
∫

(exp[2φ(t)])∗

ϒ2(t)
dt

] [
dy4 + η4

i (t)dxi
] ⊗ [

dy4 + η4
i (t)dxi

]
, (48)
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with η4
i (t) computed following formulas (47) defines a class of cosmological solutions of

the Einstein equations (23) for D̂ with a source ϒα
β = diag[ϒγ ;ϒ1 = ϒ2 = ϒ2(t);ϒ3 =

ϒ4 = 0]. We can extract Levi-Civita configurations if we fix, for instance, the integration
constants 1nk = 2nk = 0.

For gravitational polarizations with certain smooth limits

|φ∗(t)|
ϒ2(t)

→ −a−2(t),

∫
(exp[2 φ(t)])∗

ϒ2(t)
dt → 0, η4

i (t) → 0

(this can be satisfied by a corresponding choosing of functions φ(t),ϒ2(t) and integration
constants 1nk , 2nk), the solutions (48) transform not just into the FRW metric (13) but into its
conformal transform (with multiplication on factor a−2(t)). Such off-diagonal cosmological
solutions have certain similarities (for small nonholonomic deformations) to conformally
transformed FRW solutions if φ(t),ϒ2(t) are fixed to mimic a(t) as in (15) and (16) for the
Hubble parameter.

Solutions of Type 2 As for the type 1, we also take ◦gi = 1, ◦h3(t) = −a−2(t), ◦h4 = 1
but generate anisotropic and inhomogeneous solutions parametrized by metrics of type (39)

ηg = dx1 ⊗ dx1 + dx2 ⊗ dx2 + h3(x
k, t)e3 ⊗ e3 + 0h4(x

k)e4 ⊗ e4,

e3 = dt + wi(x
k, t)dxi, e4 = dy4 +

[
1nk

(
xi

) + 2nk

(
xi

)∫
h3dt

]
dxi,

(49)

for arbitrary generating functions h3(x
k, t),wi(x

k, t), 0h4(x
k) and integration functions

1nk(x
i) and 2nk(x

i), when ϒ2 = 0. The polarization functions are

ηi = 1, η3 = a2(t)h3(x
k, t), η4 = 0h4(x

k),

η3
i = wi(x

k, t), η4
i = 1nk

(
xi

) + 2nk

(
xi

)∫
h3dt,

with ◦wi(t) = 0 and ◦ni(t) = 0. Such cosmological solutions are anisotropic and inhomo-
geneous and constructed as nonholonomic deformations of a conformally transformed (with
multiplication on factor a−2(t)) FRW metric (13). We can prescribe polarization functions
η3(x

k, t) when h3 = η3
◦h3(t) → −a−2(t) for η3 → 1.

The conditions (30) selecting Levi-Civita configurations transform into equations

2nk

(
xi

) = 0 and ∂i
1nk = ∂k

1ni,

w∗
i + ∂i

0h4 = 0 and ∂i wk = ∂k wi.
(50)

Such constraints can be satisfied for any generating function h3(x
k, t) but impose additional

constraints on N -coefficients wi(x
k, t).

Off-diagonal metrics of type (49) can be generated to be only with time like dependence
of coefficients, when h3 = h3(t),wi = wi(t) and ni(t) are determined with some constant
values of 0h4,

1nk,
2nk. Such conditions are for the Levi-Civita configurations if wi = const.

This defines vacuum solutions of the Einstein equations. They transform conformally and
nonholonomically a FRW universe into certain vacuum Einstein configurations which (in
this particular case) can be diagonalized by coordinate transforms.
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Solutions of Type 3 It is not possible to construct off-diagonal generalizations of type (40),
with coordinate y3 = t, for FRW universes, when h3 = − 0h3(x

k) does not depend on t

and ◦gi = 1, ◦h3(t) = −a−2(t), ◦h4 = 1. For such solutions, we can not obtain h3 ∼ a−2(t)

in the limit of trivial polarizations. Considering inhomogeneous metrics of type (45) with
ω = ω(xi, t, y), where a−2(t) can be included into ω2, we model general inhomogeneous
solutions obtained via “vertical” conformal transforms and further nonholonomic deforma-
tions. The metrics are of type

ηg = dx1 ⊗ dx1 + dx2 ⊗ dx2

+ a−2(t)ω̃2(xi, t, y)
[− 0h3(x

k)e3 ⊗ e3 + h4(x
k, t)e4 ⊗ e4

]
, (51)

e3 = dt + wi(x
k, t)dxi, e4 = dy4 + ni(x

k, t)dxi,

where ω = ω̃/a is a solution of ∂kω + wkω
∗ + nk∂ω/∂y = 0. The equation (33) for h∗

3 = 0
transforms into

h∗∗
4 − (h∗

4)
2

2h4
− 2 0h3h4ϒ2(x

k, t) = 0. (52)

Integrating two times on t, we can define h4(x
k, t) for any given 0h3(x

k) and ϒ2(x
k, t).

Then we can compute the N -connection coefficients following formulas

wi = −∂i φ̃/φ̃∗, ni = 1nk

(
xi

) + 2nk

(
xi

)∫
[1/(

√|h4|)3]dt, (53)

for φ̃ = ln |h∗
4/

√| 0h3h4||.
The Levi-Civita configurations are extracted from the set of solutions (51) if

2nk

(
xi

) = 0 and ∂i
1nk = ∂k

1ni,

and
(
wi[φ̃])∗ + wi[φ̃] (h4[φ̃])∗ + ∂ih4[φ̃] = 0,

∂i wk[φ̃] = ∂k wi[φ̃].
Such conditions are always satisfied for cosmological solutions with φ̃ = φ̃(t) or if φ̃ =
const (in the last case wi(x

k, t) can be any functions as follows from (34) with zero β and
αi, see (36); in such cases, we must take ϒ2 = 0).

The first subclass of metrics (51) (with solutions depending only on t, with nontrivial
ω(t, y), for constant 0h3 and 1nk; 2nk = 0 and nontrivial ϒ2(t)) are parametrized in the
form

ηg = dx1 ⊗ dx1 + dx2 ⊗ dx2+a−2(t)ω̃2(t, y)

× [− 0h3dt ⊗ dt + h4(t)(dy4 + 1nidxi) ⊗ (dy4 + 1nidxi)
]
, (54)

where h4(t) is any solution of h∗∗
4 − (h∗

4)2

2h4
− 2 0h3h4ϒ2(t) = 0.

The second subclass of metrics (51) contains arbitrary functions wi(t) but for ϒ2(t) = 0
and h4(t) is any solution of h∗∗

4 − (h∗
4)

2/(2h4) = 0. For constant 0h3 and 1nk and 2nk = 0,

we get

ηg = dx1 ⊗ dx1 + dx2 ⊗ dx2+a−2(t)ω̃2(t, y)
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× [− 0h3(dt + wi(t)dxi) ⊗ (dt + wi(t)dxi)

+ h4(t)(dy4 + 1nidxi) ⊗ (dy4 + 1nidxi)]. (55)

Both types of solutions (54) and (55) are for the Levi-Civita connection. They can be
generalized for the canonical d-connection by introducing nontrivial constants 2nk in the
formulas for N -connection coefficients, N4

i = ni(t), see (53), with h4(t) respectively com-
puted as in (52), when ϒ2 = ϒ2(t) and or ϒ2 = 0.

For the metric (51), the polarization functions are 0h3(x
k)

ηi = 1, η3 = ω̃2(xi, t, y) 0h3(x
k), η4 = a−2(t)ω̃2(xi, t, y) h4(x

k, t),

η3
i = wi(x

k, t), η4
i = 1nk

(
xi

) + 2nk

(
xi

)∫
h3dt,

with ◦wi(t) = 0 and ◦ni(t) = 0. We have to eliminate respectively the dependencies on xi

in these formulas in order to compute the gravitational polarizations for the metrics (54) and
(55). For simplicity, we omit the formulas for this class of solutions. Such classes of metrics
limit to the conformally transformed FRW one (with conformal factor a−2(t)) if ηα → 1 and
ηa

i → 0.

Solutions of Type 4 If we fix φ = φ0 = const in (36), but h∗
3 �= 0 and h∗

4 �= 0, we have
to reparametrize the sets of generating and integration functions in a different form. The
solutions (41) with ◦gi = 1, ◦h3(t) = −a−2(t), ◦h4 = 1 are of type

ηg = dx1 ⊗ dx1 + dx2 ⊗ dx2

− 0h2
[
f ∗ (

xi, t
)]2 |ςϒ

(
xi, t

) |e3 ⊗ e3 + f 2
(
xi, t

)
e4 ⊗ e4, (56)

e3 = dt + wi(x
k, t)dxi, e4 = dy4 + nk

(
xi, t

)
dxi,

where

ςϒ = 1 − h2
0

16

∫
ϒ2(x

k, t)
[
f 2

(
xi, t

)]2
dt,

wi = −∂iςϒ

(
xk, t

)
/ς∗

ϒ

(
xk, t

)
,

nk = 1nk

(
xi

) + 2nk

(
xi

)∫ [f ∗(xi, t)]2

[f (xi, t)]2
ςϒ

(
xi, t

)
dt.

The Levi-Civita configurations are chosen when 2nk = 0 and 1nk(x
i) are any functions

with ∂i
1nk = ∂k

1ni. The constraints for wi = −∂iςϒ/ς∗
ϒ are similar to (44).

We obtain from (56) generic off-diagonal homogeneous cosmological solutions if we
consider metrics with dependence only on t. They can be written in the form

ηg = dx1 ⊗ dx1 + dx2 ⊗ dx2 − 0h2
[
f ∗ (t)

]2 |ςϒ (t) |e3 ⊗ e3 + f 2 (t) e4 ⊗ e4,

e3 = dt + wi(t)dxi, e4 = dy4 + nk (t) dxi,
(57)

where, for constant 1nk,
2nk and 0h, and ςϒ(t) = 1 − h2

0
16

∫
ϒ2(t)[f 2(t)]2dt,

wi = −∂iςϒ (t) /ς∗
ϒ (t) , nk = 1nk + 2nk

∫ [f ∗(xi, t)]2

[f (xi, t)]2
ςϒ(t)dt.
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For simplicity, we omit the explicit formulas for gravitational polarizations (they can be
computed similarly to those given for above examples).

Taking 2nk = 0 for (57) and imposing constraints of type (44) for wi(t), we generate new
classes of cosmological solutions in general relativity. For trivial gravitational polarizations
and vanishing N -connection coefficients, such metrics result in the conformal transform
(with factor a−2(t)) of the FRW metric (13).

4.1.2 Locally Anisotropic Bianchi Spacetimes

We speculate how a Bianchi metric Bgα′′β ′′ (18) can be generalized into locally anisotropic
solutions. Taking any set of coefficients Bgαβ(t), we have to construct certain frame trans-

form, ◦
Bgαβ = Be

α

α′′ Be
β

β ′′ Bgαβ,16 when ◦
Bgαβ is parametrized as a prime metric

◦
Bg = ◦gidxi ⊗ dxi + ◦ha(t)ea ⊗ ea, e3 = dt + ◦wi(t)dxi, e4 = dy4 + ◦ni(t)dxi .

Introducing corresponding gravitational η-polarizations, we construct nonholonomic defor-
mations ◦

Bg → η

Bg, where the target metric can be any one of type (45), or (for ω2 = 1) of
type (2). In general, such configurations are locally anisotropic and inhomogeneous when
the solutions depend on all coordinates.

We can derive generic off-diagonal solutions with the coefficients depending only on t,

or being some constants, as we proved in details in previous sections. The main difference is
that for trivial gravitational polarizations such metrics describe frame/conformal transforms
of Bianchi spacetimes and not of conformal transforms of FRW metrics. Explicit construc-
tions depend on “structure constants” (19) for the prime metric and are, in general, different
for four types of off-diagonal generalizations. The length of this paper does not allow us to
provide such details and analyze possible applications in cosmology.

4.1.3 Off-Diagonal Kasner Type Metrics

The data for the primary metric are taken in the form ◦g1 = 1, ◦g2 = t2(p3−p1), ◦h3 =
−t−2p1 , ◦h4 = t2(p2−p1) and ◦Na

i = 0 with constants p1,p2 and p3 as in the metric (20). For
simplicity, we analyze in this section solutions with p3 = p1 and consider an example when
a Kasner universe is generalized to locally anisotropic configurations of type 4 characterized
by gravitational polarizations

ηi = 1, η3 = 0h2
[
f ∗ (

xi, t
)]2

, η4 = f
(
xi, t

)
,

η3
i = wi(x

i, t), η4
i = ni(x

k, t).

For ha = ηa
◦ha and Na

i = ηa
i + ◦Na

i , the target metric is of type (41) generated for ϒ2 = 0,

ηg = dx1 ⊗ dx1 + dx2 ⊗ dx2

− 0h2
[
f ∗ (

xi, t
)]2

t−2p1 e3 ⊗ e3 + f 2
(
xi, t

)
t−2p1 e4 ⊗ e4, (58)

e3 = dt + wi(x
k, t)dxi, e4 = dy4 + nk

(
xi, t

)
dxi,

16We have to solve certain quadratic algebraic equations in order to define frame coefficients depending on
coordinate t, or being some constants.
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where we can consider arbitrary wi = wi(x
i, t) and

nk = 1nk(x
i) + 2nk(x

i)

∫ [f ∗(xi, t)]2

[f (xi, t)]2
dt.

The coefficients ha are solutions of the Einstein equations for the canonical d-connection,
see (27) (and/or, equivalently, (33)) written in the form

√|h3| = 0h(
√|h4|)∗ for arbitrary

generating function f (xi, t) if p2 = p1. We have to impose additional constraints on f (xi, t)

if the last condition is not satisfied.
In the limit of trivial polarizations, the metric (58) results into a conformal transform

(with factor t2p1) of Kasner solution (20). In general, such a prime metric is not a solution of
the Einstein equations for the Levi-Civita connection but it is possible to chose gravitational
polarizations generating vacuum off-diagonal Einstein fields even the conditions of type (21)
are not satisfied. Such target metrics may be stable (it is necessary an additional analysis of
stability properties for any explicit case).

We can eliminate dependence on space coordinates and generate solutions of type

ηg = dx1 ⊗ dx1 + dx2 ⊗ dx2

− 0h2
[
f ∗ (t)

]2
t−2p1 e3 ⊗ e3 + f 2 (t) t−2p1 e4 ⊗ e4,

e3 = dt + wi(t)dxi, e4 = dy4 + nk (t) dxk,

for arbitrary wi = wi(t) and constant 1nk and 2nk, when nk = 1nk + 2nk

∫
dt[f ∗(t)]2/

[f (t)]2. To extract Levi-Civita configurations we must fix 2nk = 0 and impose constraints
of type (44) on wi(t).

In a similar form, we can construct nonholonomic deformations of the Kasner universes
of types 1–3 and/or to generalize them to solutions of type (45). The corresponding tar-
get metrics may be with “gravitational chaos” or constrained nonholonomically to became
stable. We omit such details in this work.

4.1.4 Rotating Cosmologies with Local Anisotropy

We can chose the prime’s metric data to be given by the Gödel solution (22) when ◦gi =
Ggi(x), ◦ha = Gha and ◦Na

i = GNa
i , with local coordinates xi = (x, z) and ya = (t, y).

Considering polarizations

η1 = eψx,z), η2 = 2eψ(x,z)−2x, η3 = η3(x, z, t), η4 = η4(x, z, t),

η3
i = wi(x, z, t), η4

i = nk (x, z, t) ,

for gi = ηi
◦gi,

◦ha = ηa
◦ha, Na

i = η3
i + ◦Na

i , when N3
i = wi(x, z, t) and N4

i = ni(x, z, t),
we generate metrics of type

η

Gg = Ga2[eψx,z) (dx ⊗ dx + dz ⊗ dz)

− η3(x, z, t)(dt + wi(x, z, t)dxi) ⊗ (dt + wi(x, z, t)dxi)

+ η4(x, z, t)(dy + ni(x, z, t)dxi) ⊗ (dy + ni(x, z, t)dxi)]. (59)

Choosing a source determined by cosmological constant ϒ2 = ϒ4 = Gλ, we construct a
class of type 1 exact solutions if

ψ̈ + ψ ′′ = 2 Gλ, η∗
4 = 2 Ga2 η3η4 Gλ/φ∗,
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βwi + αi = 0, n∗∗
i + γ n∗

i = 0,

with the coefficients

αi = Ga2 η∗
4∂iφ, β = Ga2 η∗

4 φ∗, for φ(x, z, t) = ln

∣∣∣∣ η∗
4√| Ga2 η3η4|

∣∣∣∣,
γ = (

ln | Ga2 η4|3/2/| Ga2 η3|
)∗

.

Such solutions are derived directly from prime Gödel metrics and have limits to rotating
universes for trivial polarizations.

In explicit form, we can model locally anisotropic and inhomogeneous models with ro-
tation when h∗

4 �= 0; for Gλ �= 0, we get φ∗ �= 0. We obtain (computing consequently for a
prescribed generating function φ(x, z, t))

η1 = eψx,z), η2 = 2eψ(x,z)−2x, η3 = ± Gλ−1 × |φ∗(x, z, t)|,
η4 = 0η4(x, z) ± 2 Gλ−1 × exp[2 φ(x, z, t)]dt,

wi = −∂iφ/φ∗,

ni = 1nk (x, z) + 2nk (x, z)

∫
[η3(x, z, t)/(

√|η4(x, z, t)|)3]dt.

(60)

The metric (59) with coefficients (60) is an explicit example of solutions of type (37)
when the source is determined by a cosmological constant. It defines a rotating cosmology
additionally imbedded into nontrivial gravitational backgrounds, which (in general) are lo-
cally anisotropic and inhomogeneous. We can impose restrictions of type (30) and select
Levi-Civita configurations. It is possible also to construct models with anisotropic rotation
when such solutions do not depend on xi, but only on t, or with generalizations of the Gödel
model determined by off-diagonal solutions of type 2–4.

4.2 Modeling Anisotropic De Sitter Configurations

We can generate cosmological solutions when the coefficients gi(x
k, t) in (2) depend ex-

plicitly on variable t. Let us consider a conformal factor q(xk, t) when

qg = q2(xk, t)[ηi(x
k) ◦gidxi ⊗ dxi

+ η3(x
k, t) ◦h3(t)e3 ⊗ e3 + ◦h4(x

k)e4 ⊗ e4], (61)

e3 = dt + wi(x
k, t)dxi, e4 = dy4 + ni(x

k, t)dxi .

By straightforward computations, we can prove that the Riemann and Ricci tensor for an
arbitrary metric compatible d-connection, see details in [21], do not change under transform
ηg= [gij , hab,N

a
i ] → qg= [q2gij , q

2hab,N
a
i ] if

eiq = ∂q/∂xi − wiq
∗ = 0. (62)

For an ansatz of form (61), the Einstein equations for the canonical d-connection (23) with
source (25) is equivalent to (26)–(29) and additional equations (62) for q(xk, t).

We search a subclass of inhomogeneous solutions when q = q̃(xk, t)a2(t), with a prime
metric ◦gi = 1, ◦h3 = a−2(t), ◦h4 = ◦h4(x

k), ◦Na
i = 0, and η-polarizations chosen such a

way that data

gi = ηi(x
k), h3 = η3(x

k, t) ◦h3(t), h4 = ◦h4(x
k),
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wi = η3
i (x

k, t) + ◦N3
i , ni = η4

i (x
k, t) + ◦N4

i ,

generate a metric (solution of the Einstein equations) of type (49) with arbitrary generating
functions wi and h3. For trivial polarizations, when ηα → 1 and ηa

i → 0, and q̃ = ◦h4 = 1,

the metric (61) transform into the FRW metric (17) if we take a2(t) to be determined as a
solution of the Friedmann equations (15) and (16).

The goal of this section is to prove that by corresponding nonholonomic distributions
(constraints) on inhomogeneous metrics we can model de Sitter like (exponential on t) cos-
mological solutions of vacuum Einstein equations. In such a model, a function a(t) = a0e

Ht

contains the Hubble constant H as an experimental parameter determining a class of non-
holonomic constraints and related conformal transform with factor q = q̃(xk, t)a0e

Ht , when
(62) are

∂ ln |̃q|/∂xi − 2wiH = 0.

Parameterizing wi = twi(t) + swi(x
k) when ∂k

swi = ∂i
swk, we solve this equation and

satisfy the Levi-Civita conditions (50) if

η4
i = 1ni(x

k), with ∂k
1ni = ∂i

1nk,

swk = −∂k
◦h4 and ln |̃q(xk, t)| = −2H

∫
swi(t)dxi − ◦h4(x

i).

Putting together the above formulas in (61), we get a class of inhomogeneous off-
diagonal cosmological solutions with local anisotropy,

qg = a2
0e

2Ht exp

[
−2H

∫
twi(t)dxi − ◦h4(x

i)

]
[dx ⊗ dx + dz ⊗ dz

+ η3(x
k, t)a−2

0 e−2Hte3 ⊗ e3 + ◦h4(x
k)e4 ⊗ e4], (63)

e3 = dt + [ twi(t) + swi(x
k)]dxi, e4 = dy4 + 1ni(x

k)dxi .

This metric models a de Sitter like expansion with arbitrary generating/integration functions
(twi(t),

swi(x
k), η3(x

k, t), ◦h4(x
i) 1ni(x

k)) and constants a0 and H which must be chosen
following certain boundary/symmetry and other physical superpositions to satisfy the exper-
imental data. We can fix such polarization functions (i.e. generating/integration functions)
when a very short accelerated “inflationary” stage is dominate by a locally anisotropic and
inhomogeneous vacuum solution of the Einstein equations, lasting ∼10−36 and containing
the de Sitter metric. Then we can say that such an locally anisotropic stage was followed
by a decelerated homogenizing expansion, first with a radiation dominated era and then by
matter dominated era.

The class of off-diagonal inhomogeneous solutions (63) is different for the “diagonal”
family of Szeres-Szafron metrics considered in inhomogeneous cosmology. Here we note
that the books [28, 29], including references within, provide a comprehensive review of the
characteristics, properties and exact and/or inhomogeneous cosmological solutions. From
any such diagonal and off-diagonal inhomogeneous metric, we can recover the FRW model,
consider solitonic perturbations and analyze contributions of a nontrivial cosmological con-
stant [30].

Our main conclusion is that using generic off-diagonal exact solutions of the Einstein
equations, with correspondingly prescribed nonholonomic distributions, we can elaborate
cosmological models with exponential expansion and limits to FRW configurations without
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additional scalar fields which would be responsible for inflation. In our approach, inflation
is modelled by nonlinear off-diagonal interactions and constraints on such a “pure” gravita-
tional dynamics (in [31], we studied a model of anisotropic brane inflation with off-diagonal
metrics).

5 Outlook, Discussion and Conclusions

In this work we have provided the essential features on applications in cosmology of the
anholonomic deformation method which relate the geometry of nonholonomic manifolds to
exact solutions in gravity. In particular, given any physically important cosmological solu-
tion of Einstein equations (defining respectively the FRW, Bianchi, Kasner, Gödel or other
universes), we constructed new classes of generic off-diagonal exact cosmological solutions
which are, in general, locally anisotropic and/or inhomogeneous. Alternately, the nonholo-
nomic deformations described here for cosmological solutions can be viewed as examples
of the geometry of nonholonomic distributions and generalized transforms of geometric
structures for classical and quantum (non) commutative spacetimes. While we have con-
sidered the approach for Einstein’s gravity, it is clear that the general constructions can be
extended to higher dimensions, various Lagrange-Finsler and string/brane gravity models
(albeit with increasing computational complexity in computing off-diagonal higher dimen-
sion terms and/or higher order nonholonomic constraints).

Our approach allows us to construct general cosmological solutions in various gravity
theories with metrics gαβ(uτ ) parametrized in the form

q2 ×

∣∣∣∣∣∣∣∣

g1 + ω2(w 2
1 h3 + ω2(n 2

1 h4) ω2(w1w2h3 + n1n2h4) ω2 w1h3 ω2 n1h4

ω2(w1w2h3 + n1n2h4) g2 + ω2(w 2
2 h3 + n 2

2 h4) ω2 w2h3 ω2 n2h4

ω2 w1h3 ω2 w2h3 h3 0
ω2 n1h4 ω2 n2h4 0 h4

∣∣∣∣∣∣∣∣
,

where the local coordinates are of type uτ = (xi, ya), for xi = (x3, x2) and ya = (y3 =
t, y4 = y) and spacetime signature (+,+,−,+). The coefficients gk(x

i), ha(x
i, t),wk(x

i, t),

nk(x
i, t), q(xi, t) and ω(xi, t, y) can be defined in explicit form (following well defined and

quite simple procedures) by integrating and/or differentiating some generating functions.
Such metrics depend on certain classes of integration functions and constants in order to
define very general classes of exact solutions in Einstein gravity and generalizations. As a
matter of principle, any solution of gravitational field equations with certain general matter
fields sources can be represented in the above generic off-diagonal form by corresponding
frame and coordinate transforms [17]. We have to involve certain additional physical con-
siderations, suppositions on symmetry of interactions and boundary conditions in order to
model certain realistic cosmological models and scenaria.

An important issue which we have briefly discussed in this work concerns the most gen-
eral classes of cosmological solutions with “nonohlonomic” time like variable y3 = t. The
priority of the anholonomic deformation method is that we can determine almost all possible
types of cosmological metrics and deformations of connection in general form not making
approximations with any terms in the associated systems of partial differential equations.
The surprising propriety of the introduces nonholonomic deformations of fundamental geo-
metric and physical objects is that the constructions are such way performed that we get
separations of the gravitational field equations (with respect to certain adapted frames of ref-
erence) which allows us to generate exact solutions. Further approximations (for instance,
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for generic off-diagonal metrics depending only on time variables t and with certain pre-
scribed spacetime symmetries) are possible, but in such case there are not lost important
types of nonlinear interactions/evolutions which can be “lost” during approximations for
deriving effective (simplified) systems of equations.

Furthermore, we have considered various generalizations of the known important cos-
mological solutions which may lead to interesting new insights into modern cosmology with
locally anisotropic and inhomogeneous physical scenaria and nonlinear interactions. These
provide an interesting arena for further exploration in gravity theories and cosmology. In
principle it is possible to model various nonstandard inflation, dark energy and dark matter
effects not introducing additional/exotic scalar and other fields but imposing certain non-
holonomic constraints on the off-diagonal dynamics of gravitational interactions in standard
Einstein gravity. In addition, it is clear that there are many interesting directions that can
be studied within the framework of the geometry of nonholonomic distributions/frames and
off-diagonal metrics in gravity and cosmology. Such investigations became possible after a
general geometric method of constructing exact solutions in gravity was elaborated.
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